Educational Package

Technical Documentation: ER-4iA Robot with R-30iB Mate Plus Controller

V5.3 (S/W Version 9.3)
Contents

1 Installation / Quick Start Guide .. 5
2 Safety ... 6
 2.1 General Instructions ... 6
 2.2 AUTO/T1/T2 Switch ... 7
 2.3 DCS Password ... 7
3 Selecting and running Example program .. 8
 3.1 Start Up Screen .. 8
 3.2 Example Program “AAA DEMO” .. 9
 3.3 AAA DEMO Program Sequence with / without iRVision ... 13
 3.4 Operation Menu Display ... 14
 3.5 4D Graphics (Option) .. 15
4 Demonstration Program Setup / Teaching ... 16
 4.1 Gripper Setup ... 16
 4.2 UFrame 2 Setup .. 17
 4.3 Orient Origin Point .. 19
 4.4 X-Direction Point ... 20
 4.5 Y-Direction Point ... 21
5 Robot Setup .. 22
 5.1 UTOOL / TCP Setup .. 22
 5.2 Payload Setup .. 22
 5.3 DCS Setup .. 23
 5.3.1 DCS Tool Model .. 23
 5.3.2 DCS Safe Zone .. 24
 5.4 I/O Setup .. 25
 5.5 Macro Setup .. 26
 5.6 TP Function Key Hint Screen .. 27
 5.7 Home / Reference Position ... 28
 5.8 Power Up Program .. 29
6 iRVision Setup (Option) .. 30
 6.1 Camera Adjustment .. 30
 6.2 Application Frame ... 32
 6.3 Camera Calibration ... 33
 6.4 Example iRVision Application .. 35
 6.5 iRVision Tips .. 36
 6.6 TP Program ... 38
7 IoT / Industrie 4.0 / PC Connection .. 39
 7.1 Physical Ethernet connection ... 39
 7.2 Robot Software Setup .. 40
 7.3 PC Setup ... 41
 7.4 Robot Homepage ... 42
 7.5 File Transfer ... 44
 7.6 Roboguide Simulator / File Transfer .. 45
Disclaimer

This documentation has been provided by FANUC Europe Corporation S.A. ("FANUC") for convenience and general information purposes only, with no intention of providing comprehensive, complete, accurate or up to date information. Therefore, FANUC does not warrant or assume any legal liability or responsibility whatsoever for the accuracy, completeness, or usefulness of any information, application, apparatus, product, use, processes or services disclosed herein.

Should you be interested in obtaining specific information or advice on FANUC applications, apparatus, products, use, processes or services, please contact FANUC at:

FANUC Europe Corporation
Société Anonyme

Zone Industrielle

L-6468 Echternach

Grand Duchy of Luxembourg

Tel.: +352-727777-1
INTENDED USE OF EDUCATION CELL

The Education Cell is intended for Education and Training Purposes

It is designed for lightness and portability, not for high speed robot motion or full acceleration.

If robot is programmed to move aggressively then this may result in undesirable shaking of the frame, even resulting in the activation of the door safety switch.

Please avoid such unintended use.
1 Installation / Quick Start Guide

Step 1
Unpack the Cell, wheel it into position and adjust the frame feet

Step 2
Download and read the Technical Documentation:
www.fanuc.eu/educational-package

Step 3
Remove the Teach Pendant from the accessory box and connect the Teach Pendant and Power cables

Step 4
Remove the Auto-T1-T2 switch key from inside the controller and insert into the switch on the front of the controller in the Auto position

Step 5
Turn on the Main Power Switch and follow the instructions on the Teach Pendant to run the Demo program
2 Safety

2.1 General Instructions

Students / new users should be supervised by competent persons who are responsible for their safety.

Users’ bodies should not enter the cell while moving/programming the robot

OK

Working in Cell **without** Teach Pendant/ Servo OFF

Programming outside Cell

NOK

Programming with TP Inside Cell

When installing, connecting peripherals etc, Servo power must be cut by E-Stop on Teach Pendant or Controller.

Users should not crowd around one another, especially in front of the cell door

OK

NOK

For more information please refer to FANUC Safety Handbook B-80687EN/15
2.2 AUTO/T1/T2 Switch

Users should do setup / programming etc in T1 mode (<250mm/s) whenever possible. T2 Mode should be reserved for Test Run and used with caution. Auto Mode can be used with the door closed after setup and programming are complete.

Use of the Auto / T1 / T2 key should be restricted to authorised persons.

2.3 DCS Password

Please note that the DCS password has been left at the default value of '1111'. It is the User’s responsibility to decide if it is necessary to change this – for instance if unauthorised access to the cell may result in DCS settings being unexpectedly changed or disabled. Correct DCS settings are necessary for safe operation of the cell – especially in Auto or T2 Mode.

If the DCS Password is changed please make sure to keep a note of the new password in a safe place – if DCS password is lost it is necessary to contact your FANUC representative to recover.
3 Selecting and running Example program

3.1 Start Up Screen

When the robot controller is turned on, it displays the following Start-Up Instructions:

Start-Up Instructions:
1) Put parts in board
2) Close Cell Door
3) Select AUTO / TP OFF
4) Reset all Errors
5) Select Prog AAA_DEMO
 Press Green Cycle
 Start Button on Front
 of Controller
3.2 Example Program “AAA_DEMO”

The program “AAA_DEMO” has been provided as an example program. It transfers the cylindrical parts supplied from one triangular ‘solitaire’ board to another.

To start the program follow these steps:

a. Robot must be in ‘AUTO’ mode, all E-Stops released, and cell door (‘Fence’) closed.

b. Robot should not be in error condition. If robot shows error condition press the “RESET” key on the Teach pendant to try to reset the errors.

c. Select the program “AAA_DEMO” and Press the ‘Cycle Start’ button on the front of the controller.

[Teach pendant enable switch must be OFF and Auto/T1/T2 switch must be in ‘Auto’ position]

Please note – program “AAA_DEMO” must be selected before pressing ‘Cycle Start”
d. The program `AAA_DEMO` expects to be started from the HOME position:

Robot at HOME

![Robot at HOME](image1)

Robot not at HOME

![Robot not at HOME](image2)

If the Robot is not at the HOME position, the following screen will appear:

![Confirmation Screen](image3)

Choose the appropriate action and press ‘ENTER’

If Option 2 “Continue” is chosen, then a confirmation screen will be displayed:

![Confirmation Screen](image4)

Note that these two functions have been implemented using the ‘Menu Utility’ function – see later section for details.
e. Before the program starts, a screen will ask for confirmation that the parts are in the correct starting position:

Make sure that the parts are in the positions shown, then press “Continue”.

f. When the program is running, a Status / Menu screen is shown:

The red/white circles show the current position of the pieces. There are two function Key Selections: End Cycle / Continue and Fast/Slow. If ‘End Cycle’ is pressed, this changes Register R[1] from 1 to 0, and the Cycle Stop status changes from Inactive to Active:

This will mean that the program will stop at the end of the next complete cycle and the Program Status will then become ‘Ended’.
g. Likewise, the Fast/Slow Function key changes the Override:

Note: the Fast / Slow Override speeds are set according to the values in R[4] and R[5] – see later section for details.

And the F4 function Key enables / disables the Vision Load / Unload section of the program – see next section for details.

Note: iRVision must be installed and set up for this function to be used.
3.3 AAA_DEMO Program Sequence with / without iRVision

There are 3 basic positions for the parts in/on the Solitaire board:

In the Left Hand side of the board:
This is the start and end position of the example program

If Vision L/UL is Disabled then sequence is:
• Move Parts from Left Hand side to Right Hand side
• Move Parts from Right Hand side to Left Hand side
• Repeat

If Vision L/UL is Enabled then sequence is:
• Move Parts from Left Hand side to Right Hand side
• Move Parts into middle of board
• Move Parts from middle of board to Left Hand side using iRVision.
• Repeat

In the Right Hand side of the board:

On the middle of the board:
This position is only used if iRVision is enabled for the example program using “F4” function key
3.4 Operation Menu Display

The Operation Menu can be displayed at any time by pressing the MENU key and then selecting the “Operate” shortcut that pops up:
3.5 4D Graphics (Option)

The “4D Graphics” function is available as an option, with a model of the cell loaded into the robot controller.

This model can be displayed by pressing the MENU button and selecting “4D Graphics”:

The 4D graphics function has many features, for example as shown below the display of the Jog Coordinates – in this case the WORLD Jog Coordinate System:
4 Demonstration Program Setup / Teaching

The positions of the holes in the tray are calculated, not taught – so there should be no need to touchup / reteach the individual hole positions. However, it may be necessary to touchup / reteach the User Frame (UFrame) which defines the position of the tray relative to the robot.

4.1 Gripper Setup

To teach the positions it is necessary to use a part held in the gripper.

Gripper Force should be set at 50% using the small rotary switch on the gripper.
4.2 UFrame 2 Setup

The User Frame touchup is done using the Menu>Setup>Frames function:

![Menu>Setup>Frames](image)

This requires 3 Points to be touched-up / re-taught:

![Setup Frames](image)

Note that the MOVE_TO function key provides a method to easily check the current taught positions.
First, insert a piece into the gripper:

Make sure gripper is vertical, and jog the robot so that the piece is central in the Left-most hole on the tray shown below:
It is difficult to know when the piece is touching the table at the bottom of the hole – so this position is not used for the reference point.

Instead, jog the robot upwards using WORLD+Z until the bottom of the piece is just above the top of the tray. Use a thin piece of card to help judge this correctly:

4.3 Orient Origin Point

Then RECORD this position as Orient Origin Point – see below:
4.4 X-Direction Point

Now do the same thing for the Right-most hole in the tray:

And RECORD this position as X-Direction Point – see below:
4.5 Y-Direction Point

And finally any position on the top surface of the front of the tray:

And RECORD this position as Y-Direction Point – see below:

Note – Y-Direction Point defines the X-Y plane, so any position in the right plane will do.

This procedure will touch-up / re-teach the UFrame #2
5 Robot Setup

5.1 UTOOL / TCP Setup

Because of the simple shape and mounting of the Schunk gripper, a simple TCP with an offset of 115mm in Z is sufficient.

5.2 Payload Setup

The payload is quite low for this application – so only one payload of 0.5 kg has been set:
5.3 DCS Setup

DCS (Dual Check Safety) has been used to ensure that the robot cannot accidentally hit the walls of the cell. This requires setting up a Tool Model and a Safe Zone.

5.3.1 DCS Tool Model.

A simple DCS model using one “Line_seg” type model has been used. For more details please refer to DCS manuals.
5.3.2 DCS Safe Zone

A simple DCS Cartesian Position Check Zone has been set up using a Diagonal line to define a cuboid zone, running from a point on the “top left” of the cell to the “bottom right” – see screenshot below - where the inside of the cuboid is safe.

If the robot or the tool comes close to the edge of this zone, the robot will stop.

For more details please refer to DCS manuals.
5.4 I/O Setup

Only 2 I/Os are used, for gripper Open / Close

These outputs are configured as Complementary, so when, for example R0[7] is set ON, R0[8] is automatically forced to OFF and vice-versa.
5.5 Macro Setup

One macro has been set up, to allow the user to easily toggle the gripper open / close using SHIFT + User Key 1 on the Teach Pendant:
5.6 TP Function Key Hint Screen

To allow the user to easily remember the setting of the Function Key, a Hint Screen has been set up using an HTML Page:

When the “Menu” key is pressed, the Shortcut key F2 “FKey” pops up:

Pressing F2 will display the FKey Hint screen:

This screen shows the current assignment of the function keys.

The text which is displayed is the text stored in String Registers SR[21] – SR[25]
5.7 Home / Reference Position

One reference position has been set up, which is used for the HOME position check. Home position is this:

And setup is this:

When the robot is in this position, the output DO [101] will be ON – and this can be checked by the TP program AA_CHK.
5.8 Power Up Program

To provide instructions to the user, a Power-Up program "PWR_UP.TP" has been assigned to both Hot Start and Cold Start.

The program simply writes instructions to the Teach Pendant:

Start-Up Instructions:
1) Put parts in board
2) Close Cell Door
3) Select AUTO / TP OFF
4) Reset all Errors
5) Select Prog AAA_DEMO
 Press Green Cycle
 Start Button on Front
 of Controller
6 iRVision Setup (Option)

The Education Cell is available with and without integrated iRVision using KOWA video camera. In either case, the iRVision Setup has not been done on the Education Cell controller. Please contact your local FANUC representative to arrange training on iRVision.

The following section is just to give a short overview of a sample iRVision setup, and is not intended to take the place of a proper iRVision training.

6.1 Camera Adjustment

If this option has been ordered, the basic camera setup should already have been done by FANUC Europe, so the camera should display an image something like this:
If the Camera View is not like this, then please adjust using the screws on the Camera Mounting bracket:
6.2 Application Frame

It is good practice to set up an Application Frame to use with iRVision, for example Uframe 9. This can be done in the same way as for the UFrame 2 Setup.

Orient Origin Point:

X-Direction Point:

Y-Direction Point:
6.3 Camera Calibration

The iRVision Calibration Grids are not included in the Education Cell. Instead the “Robot Generated Grid Calibration” Method can be used – please refer to the iRVision Operation Manual for details.

Basically a target should be temporarily attached to the Gripper as shown:

[The design of the target is explained in the iRVision manual – it should be approx. 50mm diameter]

It will appear something like this in the camera field-of-view:
The Camera Calibration takes place in 2 steps:

- First find the relationship of the target to the robot
- Second move the target around the field of view to calibrate the camera

Please note that it may be necessary to disable DCS while calibrating the camera field of view since the robot moves the target right to the edges of the field of view, close to the side walls.

All of this is done through the Teach Pendant using the iRVision Utilities Menu:

For details please refer to the iRVision Operation Manual. Note that for the Start Position, there must be enough space between the robot wrist and the cell – approx. 70mm is good:
6.4 Example iRVision Application

A simple application could be to load the parts from the centre of the board into the starting position for the Solitaire program

So the parts start like this, randomly placed in the centre of the board

And end like this, in the start position for 'Solitaire'

Using FANUC iRVision this is quite straightforward to do:

- Calibrate the Camera (as shown previously)
- Teach a reference pick-up position for one of the parts
- Teach iRVision to recognise and locate one of the parts.
- Create a TP program to use the iRVision information to pick the part and then place into the board.

(This was suggestion but has been now added to the demo cell as shipped by FANUC – see section 1.3)
6.5 iRVision Tips

FEC set this application up using the Vision Process below:

- A simple GPM locator tool to find the cylindrical part
- The GPM Locator has a search window to restrict the vision to the centre of the board to avoid finding the ‘holes’ instead of the parts:
Then the Histogram Tool and the Conditional Execution Tool are used to make sure that there is enough free space around the part to allow it to be picked up.

So all of these parts can be picked: But the two central parts here cannot be picked because they are too close together.
6.6 TP Program

Write a simple TP program to Pick and Place the parts:

It is advisable also to add in some simple error handling to check that the Vision is working OK. This can be done using the Menu Utility as described in section 7.

For more details please refer to the iRVision Operation Manual or arrange training with your local FANUC Europe representative.
7 IoT / Industrie 4.0 / PC Connection

The FANUC Europe Education Cell is delivered ready for connection to a PC or to a Network via Ethernet to allow full connectivity [For full details please refer to the FANUC Ethernet Function OPERATOR’S MANUAL B-82974EN/04].

7.1 Physical Ethernet connection

The maximum distance between controller and Hub or PC is 100m.

The Ethernet cable should be fastened by a cable clamp as shown below to prevent tension being applied to the RJ-45 connector.

This clamp also grounds the cable shield.
7.2 Robot Software Setup

To set up the Ethernet communication between PC and robot, select:
MENU>SETUP>Host Comm> TCP/IP > DETAIL:

Please set a suitable IP Address and Subnet Mask
Other settings may be required depending on your specific network connections.

To allow full access from remote device, select: MENU>SETUP>Host Comm> TCP/IP > DETAIL:

Please ensure that these resources are set to 'U' – Unlocked – to allow access.

[If you do not do this then you may see a message such as the one shown here]
7.3 PC Setup

There are different ways to set up the PC to communicate to the robot, depending on whether the PC will be permanently or temporarily connected. In either case the IP Address and Subnet mask must be suitably set:
7.4 Robot Homepage

Once the setup has been done, the Robot Homepage can be accessed from the PC by typing in the Robot IP address:

From this Homepage, sub-pages can be accessed giving access to the internal robot controller data:
For instance the Comment Tool which allows quick access to comments and data – the example below shows Numeric Registers:

<table>
<thead>
<tr>
<th>Numeric Registers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register</td>
</tr>
<tr>
<td>R0[1]</td>
</tr>
<tr>
<td>R0[3]</td>
</tr>
<tr>
<td>R1[1]</td>
</tr>
<tr>
<td>R1[2]</td>
</tr>
<tr>
<td>R1[3]</td>
</tr>
<tr>
<td>R1[5]</td>
</tr>
<tr>
<td>R1[7]</td>
</tr>
<tr>
<td>R0[5]</td>
</tr>
<tr>
<td>R0[12]</td>
</tr>
</tbody>
</table>

Or the user can access the TP programs in the controller:

Select a program:

<table>
<thead>
<tr>
<th>WEB SERVER</th>
<th>File Name: MD/INDEX. TP-HTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 19/08/23 Time: 14:52:29</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TP Program files files available on MD:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary Format</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>RBCDK6. TP</td>
</tr>
<tr>
<td>RBCON1. TP</td>
</tr>
<tr>
<td>RBCON2. TP</td>
</tr>
<tr>
<td>AAA.WORK.LP</td>
</tr>
<tr>
<td>AAA.WORK.US</td>
</tr>
<tr>
<td>AAA.ROBOT</td>
</tr>
<tr>
<td>AAA.ROBOT2</td>
</tr>
<tr>
<td>ABORT1. TP</td>
</tr>
<tr>
<td>CELLCAM1.P</td>
</tr>
<tr>
<td>CELLCAM2.P</td>
</tr>
<tr>
<td>COPY1. TP</td>
</tr>
<tr>
<td>CELLCAM3.P</td>
</tr>
<tr>
<td>CELLCAM4.P</td>
</tr>
<tr>
<td>HAND CLOSE LP</td>
</tr>
<tr>
<td>HAND OPEN LP</td>
</tr>
<tr>
<td>HAND TOOLS LP</td>
</tr>
<tr>
<td>IRV.RING10 LP</td>
</tr>
</tbody>
</table>
And see the program contents:

```
/PROG HARD_OPEN Macro
/ALTA
OWNER = NEEDITOR;
COMMENT = "Open Gripper";
PROG_SIZE = 180;
CREATE = DATE 15-09-03 TIME 22:34:10;
MODIFIED = DATE 15-09-03 TIME 22:34:10;
FILE_NAME = ;
VERSION = 0;
LINK_COUNT = 0;
MEMORY_SIZE = 0;
PROTECT = READ_WRITE;
TCI: STACK_SIZE = 0;
TASK_PRIORITY = 50;
TIME_SLICE = 50;
READY_CALLBACK = 0;
ABORT_REQUEST = 0;
PAUSE_REQUEST = 0;
DEFAULT_GROUP = ",*,","*";
CONTROL_CODE = 00000000 00000000;
/APP
/MD
1: LBL[1] ;
2: $O7(open Gripper)=ON ;
3: IF $O8(Close Gripper)=OFF, JMP LBL[1] ;
/POS
/END
```

7.5 File Transfer

After the connection between PC and Robot has been established, files can be transferred between them.

See example below – copy and paste of program ‘aaa_test.tp’ using simple ‘ftp://[robot_ip_address]’ – other software such as Filezilla can also be used.
7.6 Roboguide Simulator / File Transfer

File transfer can also be set up to work between Roboguide and the real robot:

First select Tools > Simulator:
Then set up the Simulator to communicate with the real robot connected via Ethernet:

Once setup has been done, the Simulator function can be started and FTP selected:
Now files can easily be transferred between Roboguide and real robot:

![Image of file transfer interface]

Please note that this is not the only function of the Simulator function.

For example - when the Simulator is active, the robot in the Roboguide workcell will mimic the movement of the real robot. For more details please refer to the Roboguide help files.
List of Registers

8.1 Numeric registers

Registers are used to store settings to control the cell operation, and used by the program internally.

<table>
<thead>
<tr>
<th>Register</th>
<th>Comment</th>
<th>Description</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Continue Cycle</td>
<td>This register is set to 1 at start of “AAA_DEMO”. If value is 1 then the program will loop continuously. If value is 0, program will stop at end of next full cycle. Value can be set manually or by the Menu screen described in earlier section.</td>
<td>1 to loop</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 to end</td>
</tr>
<tr>
<td>2</td>
<td>In Cycle</td>
<td>This register is set to 1 at start of “AAA_DEMO”, and is set to 0 at end of program</td>
<td>1 when in cycle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 at end of cycle</td>
</tr>
<tr>
<td>3</td>
<td>Speed Mode</td>
<td>This register is set via the Menu screen described earlier.</td>
<td>1 is fast mode,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>anything else slow.</td>
</tr>
<tr>
<td>4</td>
<td>Fast OVRD</td>
<td>This is value that will be used for Override in Fast Mode</td>
<td>75%</td>
</tr>
<tr>
<td>5</td>
<td>Slow OVRD</td>
<td>This is value that will be used for Override in Slow Mode</td>
<td>50%</td>
</tr>
<tr>
<td>6</td>
<td>User Input</td>
<td>Used by the Menu Utility to return the User’s Choice of actions</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Vision Installed</td>
<td>This should be set during software installation / setup.</td>
<td>1 is installed,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>anything else not installed</td>
</tr>
<tr>
<td>8</td>
<td>Vision Enabled</td>
<td>This is set by the Operation Menu to enable / disable Vision L/UL. Both R[7] and R[8] must be 1 for the vision section of the example program to run</td>
<td>1 is enabled,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>anything else not enabled</td>
</tr>
<tr>
<td>10</td>
<td>SPEED1</td>
<td>These are speeds and acceleration used for moves. They are set low to avoid frame shaking when on wheels. (If frame is fixed more securely, speed and acceleration could be increased)</td>
<td>750mm/sec</td>
</tr>
<tr>
<td>11</td>
<td>SPEED2</td>
<td></td>
<td>750mm/sec</td>
</tr>
<tr>
<td>12</td>
<td>ACC</td>
<td></td>
<td>75%</td>
</tr>
<tr>
<td>Register</td>
<td>Comment</td>
<td>Description</td>
<td>Default value</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>13</td>
<td>CURR PIN</td>
<td>This value is used internally by the program to keep track of the part number</td>
<td>n/a</td>
</tr>
<tr>
<td>16</td>
<td>IRV COUNT</td>
<td>Used to load 9 parts with Vision</td>
<td>n/a</td>
</tr>
<tr>
<td>100</td>
<td>ID_PICK_CYLINDER</td>
<td>These values are used internally by the program to control the sequence of moves</td>
<td>n/a</td>
</tr>
<tr>
<td>101</td>
<td>ID_PLACE_HOLE</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>102</td>
<td>ID_REMOVE_CYLIND</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>103</td>
<td>ID_EMPTY_PLATE</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>105</td>
<td>Tmp_cyl_reg</td>
<td>This value is used internally by the program to set the status registers below</td>
<td>n/a</td>
</tr>
<tr>
<td>111 to</td>
<td>A1 in to -D4 in</td>
<td>These registers are used to store the status of the parts and holes. The values in these registers are linked to the Menu Displays using the iPendant Controls – see later section</td>
<td>1 = occupied 0 = unoccupied</td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.2 Position Registers

Position Registers are used to store positions

<table>
<thead>
<tr>
<th>Position Register</th>
<th>Comment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 to 30</td>
<td>A1 to -D4</td>
<td>Locations of the holes in the tray. Note that these are calculated values, not taught values. PR[11] was taught, then the other PR[]s were calculated relative to it.</td>
</tr>
<tr>
<td>31 to 39</td>
<td>Mid 1 to Mid 9</td>
<td>'Random' positions in middle of board – not in holes – robot will find actual position using iRVision</td>
</tr>
<tr>
<td>40</td>
<td>ToolOff</td>
<td>These are Tool Offsets, used to create the motion above / to the pick and place locations.</td>
</tr>
<tr>
<td>41</td>
<td>ToolOff1</td>
<td></td>
</tr>
</tbody>
</table>

The Registers can be displayed using the 'Data' button on the Teach Pendant:
9 Program Details

9.1 List of programs

The following programs are installed in the Education Cell:

<table>
<thead>
<tr>
<th>Program</th>
<th>Comment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA_DEMO</td>
<td>Example program</td>
<td>This is Main Example program – it must be selected before pressing ‘Cycle Start’</td>
</tr>
<tr>
<td>AA_CHK</td>
<td>Check Start OK</td>
<td>Program to check robot at home and parts in correct position. Uses Menu Utility to display choices and confirmation to user – see later section for details. Also uses .STM file to display graphic of correct part position – see later section for details.</td>
</tr>
<tr>
<td>AA_HOME</td>
<td>Move Home</td>
<td>This program moves the robot to the home position. Note that it uses Joint definition position – so independent of any UFrame or UTool settings</td>
</tr>
<tr>
<td>AA-OVRD</td>
<td>Set OVRD Fst Slo</td>
<td>Set override to value specified in R[4], R[5] depending on value of mode R[3]</td>
</tr>
<tr>
<td>ABORTIT</td>
<td>ABORT PRODUCTION</td>
<td>Predefined system program – not used by this application</td>
</tr>
<tr>
<td>DSP_WEBP</td>
<td>Display Web Page</td>
<td>Macro installed by the ‘Menu Utility’ Option. This macro is used to display the Menu Screens.</td>
</tr>
<tr>
<td>GETDATA</td>
<td>Get PC Data</td>
<td>Predefined system program – not used by this application</td>
</tr>
<tr>
<td>HAND_CLOSE</td>
<td>Close Gripper</td>
<td>Program to Close Schunk Gripper (Note 1)</td>
</tr>
<tr>
<td>HAND_OPEN</td>
<td>Open Gripper</td>
<td>Program to Open Schunk Gripper (Note 1)</td>
</tr>
<tr>
<td>HAND_TOG</td>
<td>Toggle Gripper</td>
<td>Program to toggle gripper between Open and Close. This program is linked to the User Key 1 on the Teach Pendant – see details in later section</td>
</tr>
<tr>
<td>IRV_LOAD</td>
<td>Get Parts Vision</td>
<td>Pick parts from centre of board using vision and place in left hand side of board</td>
</tr>
<tr>
<td>IRV_PICK</td>
<td>Get 1 Part</td>
<td>Pick 1 part from centre of board using vision and place in left hand side of board – called from IRV_LOAD</td>
</tr>
<tr>
<td>Program</td>
<td>Comment</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>IRV_RAND</td>
<td>Put Parts Vision</td>
<td>Pick parts from Right hand side of board and place in semi-random positions on middle of board for robot to find using iRVision</td>
</tr>
<tr>
<td>IRV_SET</td>
<td>IRV Setup Posn</td>
<td>Program containing suitable start position for iRVision Camera Calibration</td>
</tr>
<tr>
<td>LISTMENU</td>
<td>LIST MENU MACRO</td>
<td>Macro installed by the ’Menu Utility’ Option. This macro is used to display 3 choices to the user when the robot is not at HOME</td>
</tr>
<tr>
<td>OPERMENU</td>
<td>Entry Menu Macro</td>
<td>Macro installed by the ’Menu Utility’ Option. This macro is not used in this application</td>
</tr>
<tr>
<td>PROMPTOK</td>
<td>Prompt Box OK</td>
<td>Macro installed by the ’Menu Utility’ Option. This macro is not used in this application</td>
</tr>
<tr>
<td>PROMPTYN</td>
<td>Prompt Box Y N</td>
<td>Macro installed by the ’Menu Utility’ Option. This macro is used to confirm the choice by the user when the robot is not at HOME</td>
</tr>
<tr>
<td>REQMENU</td>
<td>Request PC Menu</td>
<td>Predefined system programs – not used by this application</td>
</tr>
<tr>
<td>SENDDATA</td>
<td>Send PC Data</td>
<td>Predefined system programs – not used by this application</td>
</tr>
<tr>
<td>ENABLENT</td>
<td>Send PC Event</td>
<td>Predefined system programs – not used by this application</td>
</tr>
<tr>
<td>SENDSYSV</td>
<td>Send PC Sysvar</td>
<td>Predefined system programs – not used by this application</td>
</tr>
<tr>
<td>STATPAGE</td>
<td>StatusMenu Macro</td>
<td>Predefined system programs – not used by this application</td>
</tr>
<tr>
<td>S_SET1_PR</td>
<td>Solit Setup 1PR</td>
<td>Set coordinates of one Position Register for one hole</td>
</tr>
<tr>
<td>S_SETUP_PRS</td>
<td>Solit Setup PRs</td>
<td>Set coordinates of all Position Register for all holes</td>
</tr>
<tr>
<td>S_SOLIT_RESET</td>
<td>Reset Status Rs</td>
<td>Reset registers showing part status to start conditions</td>
</tr>
<tr>
<td>S_UNLD1</td>
<td>Solit Unload 1</td>
<td>Make one move, jumping over a piece and then moving the jumped-over piece to the other half of the board.</td>
</tr>
<tr>
<td>S_UNLDALL_L</td>
<td>Solit Unl All L</td>
<td>Sequence for the left side of the board, moving pieces to the right side</td>
</tr>
<tr>
<td>S_UNLDALL_R</td>
<td>Solit Unl All R</td>
<td>Sequence for the right side of the board, moving pieces to the right side</td>
</tr>
<tr>
<td>S_UNLDLST</td>
<td>Solit Unld Last</td>
<td>Make one move – for first or last pieces</td>
</tr>
<tr>
<td>USERCLEAR</td>
<td>Clear User Page</td>
<td>Macros installed by the ’Menu Utility’ Option. These macros are not used in this application</td>
</tr>
<tr>
<td>USERPAGE</td>
<td>Show User Page</td>
<td>Macros installed by the ’Menu Utility’ Option. These macros are not used in this application</td>
</tr>
<tr>
<td>ZERO</td>
<td>Move to Zero</td>
<td>Move all axes to zero</td>
</tr>
</tbody>
</table>
Note 1) In order for the Roboguide Simulation to work correctly picking and placing the virtual parts, the HAND_CLOSE and HAND_OPEN .TP programs must be replaced with Simulation programs. Please refer to actual Roboguide cell for details
9.2 Sample Program Listings

This is listing of main program "AAA_DEMO":

/PROG AAA_DEMO
1: !FANUC EUROPE EDUCATION CELL ; << Remark
2: !Example Solitaire Program ; << Remark
3: !with optional vision ;
4: CALL AA_CHK ; << Call program to check Start OK
5: R[1:Continue Cycle]=1 ; << Set Register to run continuously
6: R[2:In Cycle]=1 ; << Set Register to show status
7: CALL AA_OVRD ; << Call program to set Override %
8: CALL HAND_OPEN ; << Make sure gripper is open
9: LBL[1] ; << Label to loop up to if needed
10: CALL S_SOLIT_RESET ; << Reset status registers
11: CALL S_UNILDALL_L ; << Sequence to move pieces from Left to Right side of board
12: WAIT 2.00(sec) ; << Short delay
13: IF R[7:Vision Installed]<>1,JMP LBL[2] ; << Check if use Vision or not
14: IF R[8:Vision Enabled]<>1,JMP LBL[2] ; << Check if use Vision or not
15: CALL IRV_RAND ; << Move parts from Right of board to Middle
16: WAIT 2.00(sec) ; << Short delay
17: CALL IRV_LOAD ; << Pick parts from Middle of board using Vision and put in Left Side
18: WAIT 2.00(sec) ; << Short delay
19: JMP LBL[3] ; << Jump over next section
20: LBL[2] ; << Label for Jump
21: CALL S_UNILDALL_R ; << Sequence to move pieces from Right to Left side of board
23: WAIT 2.00(sec) ; << Short delay
24: IF R[1:Continue Cycle]=1,JMP LBL[1] ; << Repeat if register 1 is equal to 1
25: R[2:In Cycle]=0 ; << Set register to show status at end of program
/POS
/END /END
This is listing of program "AA_CHK":

```
/PROG AA_CHK

1:  !Check Start Conditions OK ;   << Remark
2:  ;
3:  !Check at HOME ;           << Remark
4:  IF DO[101:HOME Signal] = ON, JMP LBL[10] ;   << Check HOME signal – see later section for detail
5:  LBL[1] ;
6:  R[6:User Input]=0    ;      << Call Menu Utility to display User Menu 2, result in R[6]
7:  CALL LISTMENU(2,6) ;      << Call Menu Utility to display User Menu 2, result in R[6]
12:    ABORT ;
13:    JMP LBL[10] ;
14:    LBL[3] ;
15:    CALL AA_HOME    ;
16:    JMP LBL[10] ;
17:    LBL[5] ;
18:    R[6:User Input]=0    ;  << Call Menu Utility to display Prompt Box 2, result in R[6]
19:    CALL PROMPTYN(2,6) ;  << Call Menu Utility to display Prompt Box 2, result in R[6]
21:    JMP LBL[1] ;
23:    ;
24:  !Check parts OK ;
25:    CALL S_SOLIT_RESET    ;
26:    R[6:User Input]=0    ;
27:    !Display Check Page ;
28:    CALL DSP_WEBP(3) ;   << Call Menu Utility to display User Status / Confirmation Menu
29:    WAIT R[6:User Input]<<0  ;
31:    ABORT ;
32:    LBL[20] ;
33:    !Display Run Page ;
34:    CALL DSP_WEBP(4) ;   << Call Menu Utility to display User Status / Operation Menu
/END
```
10 User Interface Setup

10.1 Menu Utility Setup

The User Menu and Prompt at the start of the AA_CHK program have been set up using the Menu Utility. See below for screenshots.

Once these menus have been set up, they can be called using the predefined macros "LISTMENU" and "PROMPTYN"
10.2 HTML Screens

The Status / Menu Screens were created using MS Sharepoint Designer 2007:

Then the files were loaded into the controller and added to the browser favourites menu:

So that they can be displayed manually or using the `CALL DSP_WEBP(3)` program, which is included in the Menu Utility.
10.3 HTML Listing Extract

This is extract of listing for “EdCellOp.stm”

```html
<head>
    <meta http-equiv="Content-Language" content="en-gb">
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
    <title>Education Cell Menu</title>
    <style type="text/css">
        .style1 {
            border-color: #FFFFFF;
            border-width: 0;
            background-color: #333333;
        }
        .style2 {
            text-align: center;
        }
    </style>
</head>
<body>
    <div class="style2">
        <table style="width: 41%">
            <tr>
                <td style="width: 235px">
                    <table style="width: 140px; height: 180px; float: right;" class="style1">
                        <tr>
                            <td></td>
                            <td></td>
                            <td></td>
                            <td></td>
                            <td></td>
                            <td></td>
                            <td></td>
                            <td></td>
                            <td></td>
                        </tr>
                        <tr>
                            <td></td>
                            <td></td>
                            <td></td>
                            <td></td>
                            <td></td>
                            <td></td>
                            <td></td>
                            <td></td>
                            <td></td>
                        </tr>
                    </table>
                </td>
            </tr>
        </table>
        <table style="width: 140px; height: 180px; float: right;" class="style1">
            <tr>
                <td></td>
                <td></td>
                <td></td>
                <td></td>
                <td></td>
                <td></td>
                <td></td>
                <td></td>
                <td></td>
            </tr>
            <tr>
                <td></td>
                <td></td>
                <td></td>
                <td></td>
                <td></td>
                <td></td>
                <td></td>
                <td></td>
                <td></td>
            </tr>
        </table>
    </div>
```
Definition of one board position

State linked to Register
Register number 121
True Colour = Red
False colour = Light grey

Repeat for all other board positions up to 20

Set up objects in right column
Add label

Program Status
Add Lamp Object to show status of program

```xml
<object classid="clsid:71060668-0E45-11D3-81B6-0000E206D650" id="FRIPToggleLamp4" style="height: 40px">
  <param name="Caption" value="Ended"> Set text for False
  <param name="FontSize" value="10">
  <param name="width" value="100">
  <param name="height" value="40">
  <param name="DataType" value="101"> Link to Register
  <param name="DataIndex" value="2"> Register 2
  <param name="TrueColor" value="255">
  <param name="FalseColor" value="65280">
  <param name="Interval" value="250">
  <param name="TrueFont" value="-1">
  <param name="FastLoad" value="-1">
  <param name="TrueCaption" value="In Cycle"> Set Text for True
</param>
</object>

Repeat for other lamps
</table>
Add TP Key labels / functions objects

<object classid="clsid:7106066C-0E45-11D3-81B6-0000E206D650" id="EndCycle" tabindex="-1">
  <param name="Caption" value="Continue">
  <param name="FontSize" value="8">
  <param name="width" value="100">
  <param name="height" value="50">
  <param name="DataType" value="101"> Sets Register
  <param name="DataIndex" value="1"> Register 1
  <param name="TrueColor" value="65280">
  <param name="FalseColor" value="255">
  <param name="Interval" value="250">
  <param name="TrueFont" value="-1">
  <param name="FastLoad" value="-1">
  <param name="ViewType" value="3">
  <param name="BackColor" value="8454016">
  <param name="TrueCaption" value="End Cycle">
</object>

Repeat for other Key

<p>&nbsp;</p>
</div>
</body>
</html>
11.1 Power and Fence
11.2 Gripper
## 12 Bill of Materials

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Education Cell BOM (with Vision)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Robot, incl. Controller, Cables, TP etc</td>
<td>ER4IA-30P-M-ER1/0 (ER-4iA)</td>
<td>New ER-4iA Robot for Education Market</td>
</tr>
<tr>
<td>2</td>
<td>iRVision option - Camera</td>
<td>A05B-1426-K001</td>
<td>KOWA Camera</td>
</tr>
<tr>
<td></td>
<td>Camera Cable</td>
<td>A05B-2680-J340</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lens</td>
<td>LX-1-RO-VI-16-0-0008</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Frame, incl brackets, Parts box etc</td>
<td>LX-1-RO-ZZ-17-0-0002 (Silver)</td>
<td>Also includes 'Solitaire' board &amp; parts, and transport pallet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LX-1-RO-ZZ-17-0-0003 (Black)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Schunk Gripper - EGP40</td>
<td>LX-P-RO-TS-15-0-0001</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Gripper Fingers</td>
<td>LX-1-RO-TS-30-1-0001 (x2)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Gripper Mounting Plates</td>
<td>LX-0-RO-ZZ-09-10021 + LX-0-RO-ZZ-09-10022</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>EE Gripper Connection Cable</td>
<td>LX660-4060-T901/L800R0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PILZ safety switch</td>
<td>LX-1-RO-ZZ-34-0-0001</td>
<td>PILZ PSEN1.1p-20</td>
</tr>
<tr>
<td>9</td>
<td>Cables &amp; fuses safety switch connection kit</td>
<td>LX-1-RO-ZZ-34-0-0004</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Power Cable</td>
<td>LX-0-RO-ZZ-08-1-0007</td>
<td>Includes moulded on 220-240V Power Plug</td>
</tr>
</tbody>
</table>
13 Technical & Transport Data

<table>
<thead>
<tr>
<th>Technical data:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Power rating</td>
<td>230V 16A single phase</td>
</tr>
<tr>
<td>Power consumption</td>
<td>1 KW/h</td>
</tr>
<tr>
<td>Connection</td>
<td>Schuko plug (German style)</td>
</tr>
<tr>
<td>Air supply</td>
<td>None</td>
</tr>
<tr>
<td>Air consumption</td>
<td>None</td>
</tr>
<tr>
<td>Installation size</td>
<td>Base 1,3 x 0,7 m Height 1,8m</td>
</tr>
<tr>
<td>Weight</td>
<td>170kg</td>
</tr>
</tbody>
</table>
### Transport data

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>Base 1,3 x 0,7 m Height 1,8m</td>
</tr>
<tr>
<td>Weight</td>
<td>170kg</td>
</tr>
<tr>
<td>Packing</td>
<td>Bubble foil</td>
</tr>
<tr>
<td>Handling</td>
<td>Delivered on Pallet – When removed from pallet on wheels</td>
</tr>
</tbody>
</table>

### Version

**Document title:**
Educational Package  
Technical Documentation: ER-4iA Robot with R-30iB Mate Plus Controller

<table>
<thead>
<tr>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V5.1</td>
<td>Conversion from R-30iB Plus LR-Mate 200iD Sliding door type frame to R-30iB Plus ER-4iA with Hinged door type frame. New HMI screens.</td>
</tr>
<tr>
<td>V5.2</td>
<td>IoT / Ind 4.0 Section added. Safety Section incl. DCS password advice added.</td>
</tr>
<tr>
<td>V5.3</td>
<td>Small changes to iRVision for s/w version 9.3</td>
</tr>
</tbody>
</table>

Version: V5.3  18-12-2019    N. Ramsden